The realistic modelling of molecules for the likes for electrolytes is, however, highly complex and calls for a variety of theoretical and numerical modelling techniques. Important chemical and physical processes that define material properties take place on the quantum level, but also on larger scales of space and time - from fractions of a second to hundreds of years. Many of these processes are difficult to grasp on a mathematical level. Since the end of the 90s, the founders of nanoFlowcell Holdings Ltd have been working on methods of computer-aided simulation and modelling to enable them to examine many of these processes in sub-processes and to gain a better understanding of the fundamental material properties. They developed integrated hard and software for multi-scale modelling of flow cells, which has been perfected in DigiLab over the course of ten years. The challenge for the researchers is the correct interpretation of the raw data derived from the numerical simulations. These digital test data have to be processed in a way that they become comprehendible to researchers. Evaluation is the most critical element of simulation, as this goes on to influence the quality of the simulation software in the next development step.
DigiLab researchers are able to use complex simulation programmes like multi-scale modelling to examine in greater detail things like the structure and stability of different electrolyte materials. They can model electrochemical and transport processes and use computer-aided simulation techniques to produce molecules with improved functional properties.
The multi-scale modelling of flow cells based on quantum-mechanical principles and their digital prototyping are at the heart of DigiLab - for nanoFlowcell Holdings Ltd, this is the most effective way to structure modern R&D.
The virtual development and simulation of the nanoFlowcell and the bi-ION electrolyte are precise, fast and deliver the company a major competitive advantage. Sometimes, all it takes is one single real-life experiment to validate the computer-aided results, leading to a significant reduction in the cost of lab experiments. Modern R&D facilities such as DigiLab don't need hundreds of scientists and researchers tied up with countless, often redundant lab experiments, because digitalisation enables lean structures. In small, specialised R&D facilities, R&D processes can also be carried out faster and more flexibly than in large research institutes. With the digitalisation of R&D processes, size becomes secondary and is substituted by capable software and computing power.